Penerapan Algoritma Neural Network pada Strenght Typologi Bakat untuk Memprediksi Pemilihan Profesi Studi Kasus SMK IT Bina Nusantara Garut
Abstract
Choosing a profession is not a simple thing, it needs to be well designed and planned. By knowing the talents and potentials as well as the many role activities that give rise to several roles or activities that are influenced by these 2 things. This research uses Neural Network Algorithm and Rapidminner to predict the profession (Teacher) of students later after graduating from SMK IT Bina Nusantara Garut. This research uses 8 attributes N (Network), H (Headmen), S (Servicing), T (Thinking), R (Reasioning), Te (Technical) and GI (Generating Idea). The results of data processing bring up 8 types of teaching professions (1 to 7) and other than that are not teachers. Based on research that has been conducted using rapid miner 5.3 tools on the Strength Typology dataset from the Talent Assessment Results tested with the Neural Network method, the RMSE value is 3.465 which shows that the classification results are quite good, so that students with existing parameters can be predicted which professions are teachers and which are not, so that this pattern can be used as a benchmark for the description of the profession (Teacher) so that it can be directed and maximum effort for these students.
References
Buckingham, M, & Clifton, D. (2020). Now , Discover Your Strenghts. Gallup Press.
Seligman, Martin,EP .(2011). Flourish : A New Understanding of Happines and Well - Being.The Journal of Positive Psychology.
Collins, J. (2016) Good To Great : Why Some Companies Make the Leap and Other Dont. NHRD Network Journal2 (7).
Pradani, TS. (2011). Talent Mapping Assessment Result.Jakarta. Abahrama.com.
Royani, Rama. (2016). Talents Mapping, Inspirasi untuk hidup Lebih Asyik dan Bermakna Jakarta. Toscabook.
Mafakhir, A. Z., & Solichin, A. (2020). Penerapan Metode Naïve Bayes Classifier Untuk Penjurusan Siswa Pada Madrasah Aliyah Al-Falah Jakarta. Fountain Of Informatics Journal, 5(1), 21. Https://Doi.Org/10.21111/Fij.V5i1.4007
Nugraha, D. A., & Retnowati, W. (2015). Sistem Pendukung Keputusan Penjurusan Di Sma Menggunakan Metode Neural Network Backpropagation ( Studi Kasus Sma Islam Kepanjen Malang ). Bimasakti : Jurnal Riset Mahasiswa Bidang Teknologi Informasi, 3(2).
Nurmila, N., Sugiharto, A., & Adi Sarwoko, E. (2010). Algoritma Back Propagation Neural Network Untuk Pengenalan Pola Karakter Huruf Jawa. Jurnal Masyarakat Informatika, 1(1).
Pujianto, A., Kusrini, & Sunyoto, A. (2018). Perancangan Sistem Pendukung Keputusan Untuk Prediksi Penerima Beasiswa Menggunakan Metode Neural Network Backpropagation. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(2), 157–162. Https://Doi.Org/10.25126/Jtiik.201852631
Putu, I. A., Sinthiya, A., Rizal, M., Stmik, S., & Lampung, P. (2015). Rancangan Aplikasi Sistem Cerdas Pembelajaran Ilmu Bangun Datar Sd Negeri 01 Candiretno. Dalam Technology Acceptance Model) (Vol. 4). Www.Stmikpringsewu.Ac.Id
Santoso, A., Purnamasari, A. I., & Ali, I. (2024). Prediksi Harga Beras Menggunakan Metode Recurrent Neural Network Dan Long Short-Term Memory. Jurnal Prosisko, 11(1), 128–136.
Saraswati, E., Umaidah, Y., & Voutama, A. (2021). Penerapan Algoritma Artificial Neural Network Untuk Klasifikasi Opini Publik Terhadap Covid-19. Generation Journal, 5(2), 109–118.
Sawitri, M. N. D., Sumarjaya, I. W., & Tastrawati, N. K. T. (2018). Peramalan Menggunakan Metode Backpropagation Neural Network. E-Jurnal Matematika, 7(3), 264.Https://Doi.Org/10.24843/Mtk.2018.V07.I03.P213
Sopian, A., Wiyatno, A., & Riyandi, A. (2019). Komparasi Algoritma Support Vector Machines Dengan Algoritma Artificial Neural Network Untuk Memprediksi Nilai Persetujuan Kredit Modal Kerja Yang Diberikan Bank Umum. Jurnal Teknologi Informatika & Komputer , 5(1), 88–95.
Suhartono, D. (2012). Dasar Pemahaman Neural Network. Https://Socs.Binus.Ac.Id/2012/07/26/Konsep- Neural-Network/
Yuhandri, M. H., & Mayola, L. (2023). Identifikasi Pola Seleksi Penentuan Calon Wali Nagari Dengan Menggunakan Artificial Neural Network Algoritma Perceptron. Jurnal Komtekinfo, 158–165. Https://Doi.Org/10.35134/Komtekinfo.V10i4.485

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.